62 research outputs found

    Partially observed Markov random fields are variable neighborhood random fields

    Full text link
    The present paper has two goals. First to present a natural example of a new class of random fields which are the variable neighborhood random fields. The example we consider is a partially observed nearest neighbor binary Markov random field. The second goal is to establish sufficient conditions ensuring that the variable neighborhoods are almost surely finite. We discuss the relationship between the almost sure finiteness of the interaction neighborhoods and the presence/absence of phase transition of the underlying Markov random field. In the case where the underlying random field has no phase transition we show that the finiteness of neighborhoods depends on a specific relation between the noise level and the minimum values of the one-point specification of the Markov random field. The case in which there is phase transition is addressed in the frame of the ferromagnetic Ising model. We prove that the existence of infinite interaction neighborhoods depends on the phase.Comment: To appear in Journal of Statistical Physic

    Perfect simulation of a coupling achieving the dˉ\bar{d}-distance between ordered pairs of binary chains of infinite order

    Get PDF
    We explicitly construct a coupling attaining Ornstein's dˉ\bar{d}-distance between ordered pairs of binary chains of infinite order. Our main tool is a representation of the transition probabilities of the coupled bivariate chain of infinite order as a countable mixture of Markov transition probabilities of increasing order. Under suitable conditions on the loss of memory of the chains, this representation implies that the coupled chain can be represented as a concatenation of iid sequence of bivariate finite random strings of symbols. The perfect simulation algorithm is based on the fact that we can identify the first regeneration point to the left of the origin almost surely.Comment: Typos corrected. The final publication is available at http://www.springerlink.co

    Perfect simulation of infinite range Gibbs measures and coupling with their finite range approximations

    Full text link
    In this paper we address the questions of perfectly sampling a Gibbs measure with infinite range interactions and of perfectly sampling the measure together with its finite range approximations. We solve these questions by introducing a perfect simulation algorithm for the measure and for the coupled measures. The algorithm works for general Gibbsian interaction under requirements on the tails of the interaction. As a consequence we obtain an upper bound for the error we make when sampling from a finite range approximation instead of the true infinite range measure
    • …
    corecore